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At the instant t = 0 let there be a discontinuity on the plane x = 0 in 

the parameters p, p, 8, b of a medium. Since the relations for the laws 
of conservation are not satisfied on that plane, the discontinuity can- 

not continue to exist in that form. The aim of this paper is to deter- 

mine the motion of the medium in the subsequent moments of time. 

A variety of problems can be reduced to the problem of the resolution 

of an arbitrary disturbance: the collision of masses of gas moving to- 

wards each other; various collisions of plane discontinuity surfaces; 

gases flying apart from each other; problems in which two motionless 

gases, in contact with each other at the initial instant, are compressed 

to different pressures and are in different magnetic fields; and so on. 

The surface of the initial disturbance is not necessarily plane. In 

that case, our investigation at the initial moment of time is correct 

for sufficiently small portions of the surface of the initial discon- 

tinuity, each of which can be considered to be plane. 

From the similarity properties of the problem, it follows that the 

motion must be composed of various combinations moving in both direc- 

tions: fast (S+) and slow (S-) shock waves; fast (R+) and slow (R-j self- 

similar expansion waves; vorticity discontinuities (A); they are sepa- 

rated by a contact discontinuity (K). The symbols St, S-, R+, R-. A, K 
denote the corresponding waves and discontinuities. The speed of propaga- 

tion of these waves is such [l I that an St- or R+-wave goes ahead, 

followed by an A-discontinuity, and this in turn by an S-- or R--wave. 

Thus, there can be three waves propagating in each direction, separated 

by a contact discontinuity. The problem of the resolution of an arbitrary 

disturbance is shown schematically in Fig. 1. If it is considered that 

some of the seven waves may be missing, then there are 648 different 
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possible combinations of waves and discontinuities which may be realized, 
depending on the initial parameters of the medium to left and to right 
of the discontinuity, 

In gasdynamics, the problem of the resolution of an arbitrary discon- 
tinuity was first solved by Kotchine [ 2,3 1. 

In 14 1 the problem of the resolution of a discontinuity in a conduct- 
ing medium was investigated for the case where there is a jump only in 
the tangential component of velocity in the plane of the discontinuity. 

All the other quantities are continuous, 

~~~~~~~~~~ 

while the magnetic field is normal to the 
plane of the discontinuity. This problem is 
equivalent to the problem of a piston moving 
with a known velocity parallel to itself and 
normal to the field. Ahead of the piston 
there can be only one combination of waves, 

Fig. 1. S+R-. 

In 15 1 it was shown that if the magnetic 
field at the initial instant is parallel to the plane of the discontinu- 
ity, the problem reduces to a gasdynamic one. The problem of the resolu- 
tion of an arbitrary discontinuity was investigated under these assump- 
tions in [6,7.8 1. 

The case where the initial disturbance, and therefore the secondary 
disturbances, is small was investigated in 19 1 e By virtue of the 
assumptions made it becomes possible to solve the problem by solving 
seven equations with seven unknowns; these were obtained by equating the 
sum of the jumps across the seven infinitesimal waves of each magneto- 
hydrodynamic quantity to the initial jump. 

Since the fluid is at rest relative to a contact discontinuity, then 
for a perfectly conducting medium the contact discontinuity may be con- 
sidered to be a perfectly conducting piston moving with a velocity equal 
to the velocity of the contact discontinuity. In [ 10 I, assuming 
H2/8n<< p, jhb\ << c, where c is the speed of sound and Ab the jump 
in velocity at the initial instant, it was possible to express the velo- 
city of the contact discontinuity in terms of the parameters of the 
medium on either side of the discontinuity and thus reduce the problem 
to a piston problem, solved in the same paper. 

In the general case of the resolution of an arbitrary discontinuity 
it is not possible to solve the corresponding system of equations, nor 
to reduce the problem to a piston problem [I1 I. 

In the present paper there is presented a method of solution which 
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consists of the construction of a diagram in the space AU = u0 - u,,‘, 
Au= v. - v,,‘. Aw= too - lpo’, with the help of which, knowing AU, AU, 

Aw, it is possible to determine the combination of discontinuities which 
makes up the solution of the problem; then, writing out the relations at 
the discontinuities, there are no major difficulties in obtaining a final 
numerical solution. 

The parameters characterizing the medium at the initial moment will 
be denoted by 0. The parameters of the medium lying to the right of the 
discontinuity at the initial moment and to the right of the contact sur- 
face at later times will be written with a prime. Those lying to the 
left of the corresponding surfaces will be written without a prime. 

The parameters of the medium behind the first wave, going to left or 
right, will be denoted by I, those behind the second wave by 2, and those 
behind the third wave by 3. 

1. Conditions at shock waves. Kulikovskii [l ] noted that the 
conditions at a shock wave may be solved in terms of the parameters of 
state ahead of the wave and the tangential component of magnetic field 
behind the wave. l’he corresponding expressions were obtained in [lZ 1, - _ 
and are given below in a form due to A.A. Barmin. 

Here 

M] (1.2) 

The upper sign in Equations (1.4) and (1.5) corresponds to a wave 
travelling to the right, the lower one to a wave travelling to the left; 
Zk(hl) is a physically sensible root of the equation 
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z~~(~+1)h,-(~-~)~~]--22(P,-~ +$z,2-q21ho)- 

-@, + h) = 0 

The root Z+, which corresponds to the inequality lhll - l/z01 > 0, 

applies to the S+-wave, the root Z_, which corresponds to lhll - t/z, I < 0, 
applies to the S-wave. 

If HTo > 0, then h, - h, > 0, Z, > 0 in the St-wave, and h, - h, < 0, 

Z_ < 0 in the S--wave; therefore f* > 0. If H, < 0 then h, - h, < 0, 

Z, < 0 in the $-wave, and h, - h, > 0, 2 > O*in the S-wave; again 
f* > 0. Here, and in what follows, u, v, ZD are absolute speeds of the 
gas, U is the speed of a shock wave, V is the Alfven speed, zero in the 
index in this and the following two sections refers to conditions ahead 
of the wave, the index 1 to conditions behind the wave. 

2. Conditions at expansion waves. The conditions at expansion 
waves were solved by Friedrichs E4 I 

/ fh, I = ff* (PO, ffTo, PI) E V/<Q - 1) (P - Q-l) Hn* (2.l) 

6 - uo=7*,,, v,--v,=f~+sign~z. (2.2) 

where cf is the speed of propagation of weak, fast and slow magnetohydro- 
dynamic waves, and q* = q(P,, qO, P) is the solution of the equation 

The values of q* = q(P,, qo, P) which have physical sense are greater 
than unity, while the values of q_ = q(Po, qo, P) which have physical 
sense are less than unity. 

‘Ihe upper sign in (‘2.2) and (2.3) corresponds to an expansion wave 
going to the right, the lower sign to one going to the left. 

It should be noted that the pressure behind a shock wave or an 
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expansion wave, as well as bu, for a fixed absolute value of H, , does 
not change with a change of sign in H 0 

ro' 

3. Conditions at vortex and contact discontinuities. At a 

vortex discontinuity [13 I, there are jumps only in H, and b,, the tan- 
gential components of the magnetic field and the velocity; but their 

magnitudes remain unchanged. The change in the field and in the velocity 

are coupled by the relation 

b,,- b,, = f (h, -hJV,, (3.1) 

The upper sign corresponds to a wave going to the right, and the lower 

sign to one going to the left. 

At a contact discontinuity [13 I 

K, = K,, Pl = PO, b, = b+, (3.2) 

Ibe density and the other remaining thermodynamic variables may undergo 

a jump. 

In what follows,the case of a tangential discontinuity (H, = 0) will 
not be considered, since, for all discontinuities the normal component 

of the magnetic field is continuous, while the case of the resolution of 

an arbitrary discontinuity, when the field at t = 0 is parallel to the 

surface of the discontinuity, reduces to a case of pure gasdynamics 15 I. 

We will first consider the plane problem of the resolution of an 

arbitrary discontinuity, when 1~~ = wo' = H 
20 

= H ' = 0. 
20 

4. Combination of two waves and a contact discontinuity. 
Let us investigate the possibility that an arbitrary discontinuity be 
resolved into two shock waves or self-similar waves separated by a con- 

tact discontinuity. At the contact discontinuity Equations (3.2) must be 

satisfied. We shall see whether these conditions can be satisfied by any 

two shock waves or self-similar waves. 

let us investigate the possibility of the combinations R-KR- and 

RtKRt. From the conditions at a contact discontinuity, (3.21, and from 

(2.1), it follows that (g,, - q,,‘)(P,q,lq,, - 1) = 0. It is not diffi- 

cult to see that P,q_,q_, ’ < 1 in an R--wave and P1qtlqtl’ > 1 in an 

R+ 
_ - 

-wave. Therefore qtl = qtl’. 'Ibis means that the R KR - and RtKRt- 

combinations are possible only in the case where the point po', H ’ 
yo 

lies on the curve relating p and HY in R-- and Rt-waves, respectively, 
and goes through the point po, H 

YO' 
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It is also clear that these combinations are mutually exclusive. Vhen 

1, the Rt KRt -combination is possible; when p0 > 

the R- K R--combination is possible. 

In what follows we shall assume for definiteness that 

Let us examine the curves giving the relation between p and Hy in 
St-, S’-, Rt-, R--waves (Fig. 2), which are 
described by Equations (1.2) and (2.1), re- 
spectively. The dotten line in Fig. 2 shows 
the possible form of the line corresponding 
to the St-wave. From an examination of these Hi 
curves it follows that the combinations of 
two shock or self-similar waves and a con- 
tact surface that are possible are the Fig. 2. 

following (Figs. 3 to 6): 

1) R-KS+, R+KS-, S+KS+, 

if po > P+ (PO’, Hv,‘, H, = fL), 

R+R-K, KS-S+ (4.1) 

JL’ > H, (~a, 40, P = ~0’) 

2) R+KS+, S-KS+, R+KS-, R+R-K, KR-S+ (4.2; 

if PO < P+ (PO’, Hzlo’, 4, = H,J, H%’ > H+ (PO, H%? P = PO’) 

3) R+KR-, S-KS+, KR-St, R+S-K (4.3) 

if PO < P+ (PO’, Hzlo’, H,=H,J, 4,o’ < H+ (PO, H,, P = ~0’) 

4) R-KS+, S*KS+, R+KR-, R+KS+, KS-S+, R+S-K 

if PO > P+ (PO’, Hz/o’, 4, = H,J, Hue’ < H, (~0, Hv,, po = po’) (4.4) 

‘Ihe S-KS- combination is possible if p_(po’, H 

P-(P,,, Hyo> Hy = 0). 
yo 

‘, Hy = 0) > 

In the case described by the inequalities (4.2) and (4.3) the point 

p+(po’> HYo’, Hy = Hyo) (Fig. 4), and also in the case described by in- 

equalities (4.1) and (4.2), the point Http,, Hyo, p = po’) (Figs. 3, 4), 

may even not exist. 

Figs. 3 to 6 in the Hyp-plane, and Figs. 7 to 10 in the Auhv-plane 
apply to the cases defined by the inequalities (4.1) to (4.4), respect- 
ively. 
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Fig. 3. Fig. 4. 

For definiteness, it has been assumed that H 
yo 

> 0, H 
yo 
' > 0. 

If in the case described by inequalities (4.2) and (4.3) there is an 
S+ K St combination, then in Figs. 4, 5, 8 and 9 there will be correspond- 
ing point. Cf. the remark at the end of Section 6. 

Fig. 5. Fig. 6. 

If HYO < 0, Hy ' < 0, then Figs. 3 to 6 and 7 to 10 will not be 

changed if the vilues -H and -Au are plotted on the vertical axis in- 
stead of the values Hy an a Au, respectively. The arrows indicate the di- 
rection of the change of quantities in St-, Se-, Rt- and R--waves. 
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Fig. a. 
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In all these cases, if a combination of two waves is possible, then 

specification of pO, H 
YO' 

p,,', H 
YO 

' uniquely determines pl, H 
Yl' 

and, 

it folhws, also Au, Au. In the AuAv-plane combinations of the type 

considered correspond to discrete points. 

If the inequalities (4.1) to (4.4) become equalities, then the aggre- 

gate of co~inations, corresponding to those equalities, becomes partic- 

ular cases of those considered, as may be easily seen from the figures 

in the Hyp-plane. 

5. Combinations consisting of three waves and a contact 
surface. We will now consider combinations consisting of three shock 

waves or self-similar waves and a contact discontinuity; we shall show 

that in the Auhv -plane such a combination corresponds to a line. 

In fact, in the Auhv -plane, combinations of two waves correspond to 

points, i.e. Au and Au are constants depending only on po, W 
yo’ 

po’, 

H 
yo 

‘, Addition of another wave means the addition of another term in the 

equation for ALE, Av, and an additional parameter characterizing the 

strength of this wave. These one-parameter equations map a line in the 

Auhv-plane. 

We shall show how to construct these equations, for example the 

R-KR-S+-combinations. From Equations (1.41, (1.5), (2.2) and (2.3) we 

have 

u1 = u* + I)_ = u2’ = u1’ - 9_ = uo’ + f+’ - $_’ 

?_I1 = u. + x_ = v2’ = VI’ - x_ = vo’ - q+’ - x_’ 

From this 

Au = u0 - uO'= - $_--I#_'+ f+', AV z u,, - me' = -x_- x_'- up+' (5.1) 

From the conditions at the contact discontinuity, pl’ = pl’(p,, HYO, 

POPI HYo’), while p1 = p2 ’ in these equations is an independent para- 

meter defining the strength of the R- waves, If p. = p,,’ the strength of 

the rightward-propagating R--wave is equal to zero. For this value of 

the parameter on the curve describing Equations (5.1), we find ourselves 

at the point which corresponds to the combination R-KS+. 

For pr = 0 a point is obtained which corresponds to the combination 

R- KR'- S' when the strength of the R--waves is a maximum. In going 

aEI&s !%grn a vacuum is attained. It is not difficult to see that, in 
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addition to the line R‘-KR-St, there terminate at the point R-KS+ the 

lines corresponding to the combinations R+R-KS+, S+R-KS+, R-KS-S+, 

where the strength of the leftward-going Rt-, S+-waves and of the S-wave, 

respectively, are equal to zero. 

From the equations of these lines, constructed similarly to Equation 

(5,1), it follows that they are arranged as shown on Fig. 7. Let us ex- 

plain where the line S+R-KS+, emerging from point R-KS', ends. From 

Fig. 3 it is evident that in going along this line the strength of the 

R--wave will decrease to zero. Thus the S+R-KS+-line comes to the point 

corresponding to the S+KS+-nomination. From similar arguments it 

follows that the lines R+R-KS+ and R-KS-S+ end at points which corre- 

spond to the combinations R+R-K and KS-S', respectively. At each of those 

points three more lines can arrive, and so forth. 

From the above it follows that combinations consisting of three shock 

or self-similar waves and a contact discontinuity correspond to lines in 

the AuAv-plane. The points at the intersections of the lines correspond 

to the combinations, considered earlier, consisting of two shock or self- 

similar waves and a contact discontinuity. Every such point separates one 

line from another. The lines may extend to infinity, for example the 

S+S-KS+-, S+KR-St-lines on Fig. 7. Also, lines may terminate at points 

corresponding to maxims wave strengths. Thus, for example, it is evident 

from Figs. 3 and 7 that the line R+R-KRt continues until the strength of 

the Rt-waves is a maximum, and the lines R'KSR+, S-KS-R+, StKSSt 

terminate at points where the strength of Rt-, S--waves is maximum, that 

is, where the tangential component of the magnetic field behind the R'- 

or S-waves is equal to zero. Lines joining points corresponding to 

maximum strength of Rt- and S--waves we will call dividing lines. 

6. Colabinations with a vortex discontinuity. Inasmuch as 
lines corresponding to certain combinations are continuations one of the 

other, there are (Figs. 7 to 10) four distinct lines corresponding to 

the combinations investigated, of three waves and a contact discontinuity. 

For instance, (Fig. 7) one line corresponds to the combinations R-KR-St, 

R-KS-S+, S-KS-S+, S-KS-R+, another to R+R-KR-, R+R-KS-, R+SKS, 

S'S_KS-, etc. Examining the equations of these lines it is easy to see 

that the maximum ordinates of these lines are points on a dividing line. 

Above those points our lines can be continued only by including vortex 

discontinuities in the combinations considered. Since the investigation 

is for the case H H 
yo yo 

' > 0, a vortex discontinuity must exist on both 

sides of the contact discontinuity or be absent entirely. In the plane 

case being investigated, a vortex discontinuity rotates the tangential 

component of magnetic field 180*, and, while changing the tangential 
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component of velocity, leaves the remaining parameters unchanged. For 
every line or point lying below a dividing line there is a line or point 
above the dividing line which corresponds to a combination of the same 
waves as for the lower point plus two vortex discontinuities. 

Consider, for example, the line which corresponds to the R+R-KR+- 
combination (Fig. 7). Its equation, constructed like Equation (5.11, will 
be 

4u ET? u0 - ug’ = -$_-$+‘-$-, A=vo---ug’=x++xc’--XX- 

Let us construct the equations of the line which corresponds to the 
R+AR-KAR+-combination. From (2.21, (2.31 and (3.1) it follows that 

hu = -~+-qq-$L, Av = x+ + x+I + x_ + 2hV1+ 2hx’v, , 

As is evident from an examination of the equations constructed, for 
given initial parameters Au is the same on both lines, since the pres- 
sure and the absolute value of the field in the region between the waves 
do not change, while Au differs by the quantity 

It can be shown that this sum is the distance between the lines 
R+A K St and Ri A R-K AS+ , S+R- K St and St A R-KA St, S’ K R-S+ and 
S+AKR-AS+, except of course that x_, h,, hl’, V,, V,’ will be differ- 
ent. The distance between the points S’KS* and S+AKAS+ is equal to 
2h, (V, + V,‘), since x_ = 0 and h, = h,‘. 

We will show that the lines R+R-KR- and R+AR-KAR+ come to a comnon 
point on a dividing line, that is, the distance in the Av-direction be- 
tween lines is equal to zero on the dividing line. 

From the relations for expansion waves it follows that: 

1) if H, = 0 in an Rt-wave, then P < 1 at that point; 

2) if P < 1 and H, = 0 ahead of an R--wave, then this wave is purely 
a gasdynamic one, i.e. the jump in the tangential component of velocity 
is equal to zero. Now on the dividing line after the R*-wave going left- 
ward the tangential component of the field is equal to zero (H 

71 
= 01, 

that means P< 1. Consequently, behind this Rt-wave comes a gasdynamic 
expansion wave in which x_ = 0, from which it follows that in the right- 
ward-moving Rt-wave H, must also change to zero (H,_ ’ = 0), i.e. the 
lines R%- KRt and R+ A R-K AR+ come to one point OA the dividing line. 

It can be shown that on the dividing line the coordinates of the lines 
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R'KS-R+ and R+AKSAR+ coincide, etc. (Fig. 71, and also those of the 
corresponding lines on the other figures. 

We note that in the Auhv-plane there may be, generally speaking, 
two or more of the points StKSt, S+AKAS+, S-KS-, AS-KS-A, and thus 
of the lines S+KSS+, S+R-KS+, etc., if the lines St, S- emerging from 
the points po, H 

yo* 
no', H 

YO 
', respectively, have two or more points of 

intersection with each other. 

The question of intersections of St- and S--lines in the fJyp-plane 
was not investigated in general.. 

7. Combinations of four waves and a contact discontinuity. 
It is not difficult to see that the combination consisting of four waves 
and a contact discontinuity corresponds to a region in the Auhv-plane, 
since each combination of four waves and a contact discontinuity corre- 
sponds to a system of two equations for Au and Au, depending on two 
parameters; the lines investigated above are the boundaries of these 
regions. 

Analogously, every combination of four shock or self-similar waves, 
two vortex discontinuities and a contact discontinuity also corresponds 
to a region in the Auhv -plane, since the addition of a plane vortex 
discontinuity does not introduce any new parameter. Ihe boundaries of 
such regions are lines which correspond to combinations of three shock 
or self-similar waves, two vortex discontinuities and a contact discon- 
tinuity, investigated in the preceding article. The equations of such 
lines are constructed quite analogously to Equation (5.1). 

8. The dividing line. 'Ihe dividing line separates the regions 
R*R-KS-R+ and R+AR-KS-AR+, l?‘S-K S-R+ and R+AS-KS-AR', etc., and 
is shown in Figs. 7 to 10 by a dotted line. It is convenient to write 
the equation of the dividing line separately for each pair of regions 
which are separated by it. 

let us write the equation of the portion of the dividing line between 
the regions R+R-KR-R* and R'AR-KR-AR+: In the region R+R"KR-R', Au 

and Av satisfy the equations 

Au = -- $+ - $)+I- q_- $_'r Av =x+ + x+'-X_ -- x_' (8.1) 

which are obtained analogously with Equations (5.1). On the dividing 
line the strength of the Rt-wave is a maximum; the R--wave is a purely 
gasdynamical one; therefore p1 is expressed in terms of po, Hy,, and pl' 
is expressed in terms of po’, N 

Y0 
‘; p2 = p2’ (an independent parameter 

which changes from zero (the point of intersection of the dividing line 
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with the vacuum line) to p ' (the point of intersection of the dividing 

line with the lines R+R-Ki' and R~AR~AR')). 

From the preceding it follows that the system 

Au = - $+max - $+inax- $_ -- 9_‘, Au = X+max + x+mas (8.2) 

is obtained from (8.1); it is the system of one-parameter equations of 

the portion of the dividing line under consideration. It is clear that 

this portion of the dividing line is straight. 

The equations of the other portions of the dividing line are con- 

structed in exactly the same way; they will not be straight lines. 

9. The vacuum line. Points on the vacuum line, as well as points 

lying beyond the vacuum line, correspond to combinations containing two 

R--waves of maximum strength. Going through them, a vacuum is obtained. 

let us write the equation of the portion of the vacuum line which bounds 

the region corresponding to the RiR-KR-R'-combination. Au and AV in 

this region satisfy Equations (8.1). In these equations, pz = 0, 

PI' = P&e> HyO# PO'> Hye'? pl) on the vacuum line (Fig. 7). We again 

obtain a one-parameter family of equations with the independent para- 

meter pl, which will also be the equation of the portion of the vacuum 

line under consideration. 

The equations of the other portions are obtained analogously. The 

vacuum line is bounded on the left, but extends to (upper and lower) in- 

finity on the right. In Figs. 7 to 10 the vacuum line is distinguished 

by cross-hatching. 

10, The ease p. ,> po‘, Iffy0 1 < lIlyo’/. As before, let 

HH 
yo yo 

' > 0. From an examinatior of the curves which depict the relations 

between H and p in St-, S-, Rt-, and K-waves (Figs. 11 to 14), it 

follows tiat in this case the following combinations of two shock or self- 

similar waves and a contact surface are possible: 

if 

if 

1) R-KS, R+KS-, KS-S, R+R-K 

PO> P_‘l (PO’, HI/o’. HI, = H,), H,’ < H_ (PO, H,, P = PO’) 
(10.1) 

2) R-KS-, R-KS, S+KS-, R*R-K, KS-R" 

PO < P- (Po’r Nllo’t fi, = ~Yd, *go’ < N_ @t3~ HYOl P = PO’) 
(10.2) 
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3) S+KS-, R-KR', KS-S', S+R-Ii 
if PO < P_(Po', II%&', fi, = J~,d, HIlO > N_ (PO, fi,, p = PO') 

(10.3) 

4) R-KS- , R+KS-, R-KR', KS-S+, s+11-I< 

if PO > P_ tpo’t H?&‘2 H, = NIB), W 110 / ’ l> H-h Hgo, p = p,‘) 
(10.4) 

lhe SK S--combination is possible, 

if 

p_ (P,,‘, Hw’r N, = 0) < p- (PO, H?,O, H, = (4, Julio < 

Figures 11 to 14 and 15 to 18 correspond to these 

H_ (~0’ 3 Hm’, P = PO) 

four cases, respec- 

tively, We note that qualitatively Figs. 7 and 15 differ from each other 

only in that on Fig. 15 the points corresponding to the coronations 

S+KS and S-KS- are missing. 

The lines and re ions on these drawings are constructed exactly as for 

the case pa > p,,', 

Fig. 11. Fig. 12. 

If the combination S+KS- occurs in the cases described by Equations 

(10.1) to (10.4), then in Figs. 11 to 14 and 15 to 18 there will be a 

corresponding point (cf. the remarks at the end of Section 6). 

If the inequalities (10.1) to (10.4) become equalities the set of com- 

binations corresponding to these equalities are particular cases of the 

corresponding set of combinations under consideration, as is easily seen 
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from Figs. 11 to 14 in the t$p-plane. 

Fig. 13 Fig. 14. 

11. lhe case p. > po’, \H,,i > (HYo’\, RyQHYO’ < 0. For 

definiteness, let HyO > 0, Hy ' < 0. In this case, in every combination 
0 

there must be a vortex discontinuity going to left or right. 

This is made necessary by the fact that neither a shock wave nor a 
self-similar wave can change the sign of the field, which is however 
necessary, since at the contact discontinuity the tangential components 
of the field must be equal, It is possible to investigate in detail the 
possibility of existence of combinations of two, three and more waves, 
repeating almost entirely the previous discussions. But even without a 
detailed investigation it is clear that to every c~ination of two waves 
and a contact surface, for the case pO> pO’, by01 > bye’/ 3 ffygHyo‘> 0, 

there corresponds a combination consisting of the same waves, a vortex 
discontinuity and a contact discontinuity. 

Here the pressure and the normal velocity components between the re- 
spective waves and discontinuities must be equal in these combinations, 
since the quantities mentioned do not change if the sign of H, ahead of 
the wave is changed (the other parameters at the wave front remaining 
unchanged). The tangential component of velocity changes sign. 

'Ihe same may be said about the lines and the regions. Thus it is 
possible qualitatively to redraw Figs. 7 to 10, replacing combinations 
without a vortex discontinuity or with two vortex discontinuities by the 
corresponding combination with one vortex discontinuity, going leftward 
or rightward. 'Ibe dividing line in a given case separates regions in 
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-- 

Fig, 15, 

Fig. 16. 
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which the vortex discontinuity is going rightward from regions with a 

vortex discontinuity going leftward. 

Let us clarify which regions are situated above the dividing line and 

which below. Let us investigate the combinations AR-KS+ and R-KAS+; 

Au = f+’ + x_ + 2h,V, for the first 

Au= Au* = f+’ - x_ - 2h,'V,' for the second 

The difference Au - Au* is the same as in the case corresponding to 

HH 
yo yo 

' > 0. Therefore regions corresponding to combinations in which a 

rightward-going vortex discontinuity occurs are situated below the divid- 

ing line, regions with a leftward-propagating discontinuity are above. 

Analogously, the diagrams for the case p. > po', IHyoI < IHyo% 

HH ' < 0 may be obtained qualitatively from Figs. 15 to 18 for the 

c?,%, > po', lHyol < IHyo'], HYfYO'> 0, by replacing combinations 

without a vortex discontinuity and with two vortex discontinuities by 

combinations with one vortex discontinuity, going rightward or leftward. 

If Hyo < 0, H 
yo 
' > 0 in the last two cases discussed, then the dia- 

grams do not change if vo' - v. is plotted on the ordinate instead of 

v. - vo'. 

12. 'llnee-dimensional case of the problem. Izt us investigate 
the three-dimensional problem of the resolution of an arbitrary discon- 

tinuity. The velocity and magnetic field vectors on both sides of the 

plane of the discontinuity lie in different planes. Therefore the condi- 

tions at the contact discontinuity cannot be satisfied without introduc- 

ing three-dimensional vortex discontinuities. 

Let us assume that the initial conditions are such that the three- 

dimensional initial disturbance resolves itself into an R+ARKAR+- 

combination of waves and discontinuities. 

The equation for Au will be the same as the equation for the same 

combination in the plane case. let us construct the equation for Ah, 

br, = brs + + x- = bat (hzz - W VI + +x- = Lo- &x++ 
+ (h, - h,) VI + & x_ = bss’ = ho t ho’ -x+‘_- (h,’ - h,‘) V,’ , h,> , 



Fig, 17. 

--- 

Fig. 18. 
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From this 

(bTO - bsO’ - L)2 = R2 (12.1) 

where 

L= +p+,$ x+’ -I h,V, -I- b’vl’, R = - h,V, - h,'V,' - +$ x_ 

which is the equation of a region with center at the point (Au, Au = L,, 
Aw = Lz ) and radius equal to 131. 

La H,, II q)” and choose this direction for the y-axis, with the 
z-axis perpendicular to the y-axis and normal to the discontinuity sur- 
face. ‘Iben Lz = 0, i.e. the center of the region lies in the Auhv-plane. 
In this plane, Equation (12.1) will give two values of Au: one of them 
lies on the line corresponding to the R+R-KR+-combination; the other on 
the line corresponding to the R+ARXAR+-combination, in which the field 
is turned through 180° at the A-discontinuities; both values of Au are 
at a distance RI from the point with coordinates Au, Au = L . It can 
be shown that this point lies on the dividing line. Au has age value at 
these three points. 

‘Ibus, it has been shown that for &a 1) H,,' the surface corresponding 
to the R+ARXAR+-combination is obtained by rotating the line in the 
AuAv-plane which corresponds to the R+R-KR+-combination around the 
dividing line, lhe intersection of this surface with the plane Aw = 0 
wi 11 give two lines: one corresponds to the R+R-KR+-combination, the 
other to the R+ARKAR+-combination, where the A-discontinuity rotates 
the field through 180’; this surface separates the two regions, 
R+AR-KR-AR+ and R+AR-KS-AR+. 

All the remaining portions of the three-dimensional diagram for the 
general case of the resolution of an arbitrary discontinuity, with 

Yrll II ko’ ,are constructed in an analogous way. In the same way, rotation 
of the vacuum line, lying in the AuAv-plane, around the dividing line 
will give the vacuum surface. 

If I-J,, is not parallel to HTo', 
region does not change. ‘lhus, 

then Lz f 0 and the radius of the 
in this case, the surface in the AuAvAw- 

space which corresponds to the combination RtARRKARt is the surface 
which corresponds to the same combination of waves constructed for 

% II ILJ’ and displaced in accordance with Equation (12.1). From this 
it is clear that the criteria (4.1) to (4.4), (10.1) to (10.4), defining 
the aggregate of combinations for the case H,, not parallel to [ITo’, 
remain the same as in the case where I$,, )I MI,,‘. 
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13. Conclusion. Now let the values of the parameters be given on 

both sides of the plane of the discontinuity. We shall show how the re- 

sults of the solution may be used. Since we know I1j,,,H,O', pO, pa', we 

know which of the necessary discontinuities obtained in this paper they 

satisfy, that is, we know which equations of the lines we must write, 

using Equations (1.4), (1.5), (2.2) and (2.3), in order to construct the 

corresponding drawing. After the drawing is constructed, and since Au, 

Au, Aw are known, we ascertain in which region the point with these co- 

ordinates lies, that is, we determine the combination of waves and dis- 

continuities into which the initial discontinuity resolves itself. Equat- 

ing the sum of the jumps of each magnetohydrodynamic quantity on each of 

the resulting waves and discontinuities to that of the initial jump, we 

obtain a system of algebraic equations which has to be solved numerically. 

If the point Au, Av,Av lies in the space beyond the vacuum line, 

additional investigation is needed. The vacuum appears behind maximum 

strength R--waves, propagating in both directions. On the boundary be- 

tween the vacuum and the medium the following equations [4 ] are satis- 

fied: 

p = 0, [&I = 0, [ET] = 0 

but in view of the infinite conductivity of the medium 

E,, = - [b,H&, ET3’ = - [ba’H3’],, ETvaBc= coast, HT..,= const 

since, in the self-similar problem, electromagnetic waves cannot exist 

in the vacuum region, that is 

[(b, - ba') H& = 0 (13.1) 

Let the resolution be a plane one, and suppose we are at some point 

on the portion of the vacuum line which bounds the region corresponding 

to the combination R'R-KR-Rt. Then 

u:! = 210 _1- q+ + Ii)_, Un’ = u,,’ - $+’ - $,_’ 

(-13.2) 
7’2 = 2’” - x+ +x- , 7%’ = 74) -i- y”+’ - x_’ 

Writing out the vector product and putting into it the expressions for 

u2, U/J "2' "2' from (13.2) we obtain 

[(% - G') "- ($, - $+' + $_ - $_')I l-L,> - 

- [(Q - ~%a') i- (-xc - x+' --t x_ t %_')I H, = 0 (13.3) 
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In the Auhv -plane Equation (13.3) is a straight line. 

'Ihe equations of the straight lines emerging from other portions of 

the vacuum line are constructed in an analogous way. 

If a piston speed lies beyond the vacuum line, then from that point 

to the vacuum line one must go along a straight line of the type (13.3). 

At every point of the vacuum line the combination into which the initial 

disturbance resolves itself is known. 

If the problem is three-dimensional, then Equations (13.1) are equa- 

tions of straight lines in the Aubvhw-space, filling, to the left of 

the vacuum line, all the space which can be obtained by rotating the 

corresponding straight lines lying in the AuAv -plane by the method out- 

lined in Section 12. 

I would like to express my appreciation to L.I. Sedov, A.G. Kulikovsky 

and G.A. Liubimov for their discussions. 
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